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Abstract

A quantification of the spatio-temporal dependence among precipitation extremes is important for investigating the properties of
intense storms as well as flood or flash-flood related hazards. Extreme value theory has been widely applied to the hydrologic sciences
and hydraulic engineering. However, rigorous approaches to quantify dependence structures among extreme values in space and time
have not been reported in the literature. Previous researchers have quantified the dependence among extreme values through the concept
of (pairwise bivariate) tail dependence coefficients. For estimation of the tail dependence coefficients, we apply a recently developed
method [Kuhn G. On dependence and extremes. PhD thesis (Advisor: C. Klüppelberg), Munich University of Technology, 2006] which
utilized the multivariate tail dependence function of a subclass of elliptical copulas. This study extends the previous approach in the con-
text of space and time by considering pairs of spatial grids in South America and quantifying the dependence among precipitation
extremes based on the time series at each spatial grid. In addition, Kendall’s s is used to estimate the pairwise copula correlation (for
an elliptical copula) of precipitation between all grids in South America. The geospatial–temporal dependence measures are applied
to precipitation observations from 1940 to 2005 as well as simulations from the Community Climate System Model version 3 (CCSM3)
for 1940–2099. New insights are obtained regarding the spatio-temporal dependence structures for precipitation over South America
both with regard to correlation as well as tail dependence.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Extreme precipitation events can cause flood or flash-
flood related hazards which may lead to loss of human life,
property and livestock. The significance of spatial and spa-
tio-temporal dependence among precipitation, as well as
with related hydrologic or climate variables, has been
increasingly recognized over the years. For example, a

study of spatial and spatio-temporal dependence among
precipitation extremes can be important for identifying
the relationships among local intense storms and large-
scale extremes or anomalies. Geospatial and temporal
dependence among precipitation extremes can also be use-
ful for hydrologic analysis and designs [2] and for under-
standing climatological and hydrological characteristics
of the areas where the dependence is strong. However,
the state of the art in hydrology and climate in the area
of extremes analyses comprises mainly of applications of
univariate extreme value theory.

Univariate extreme value theory has been widely used to
analyze and model extremes for a single variable at a time.
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These approaches yield statistical estimates for
Prob(X 6 x + ujX > u), where X is the variable modeled,
x > 0 and u is a large threshold. Another line of research
has developed and utilized methodologies that model the
parameters of extreme value distributions for one variable
as functions of other variables, which could be time, space
or other physically based covariates [3–8]. These
approaches can be broadly described as Prob(X 6 x +
ujY = (Y1, . . . ,Yd), X > u), where X is the variable modeled
via univariate extreme value theory, x > 0, u is the corre-
sponding (large) threshold, and Y is a d-dimensional vector
of covariates upon which the extremes of X are condi-
tioned. There is another emerging line of research focussing
on co-occurrence or dependence among extreme values of
multiple variables [9–11]. These approaches can be broadly
described as the conditional probability of the extremes of
X with a threshold u given the extremes of Y with a thresh-
old v, i.e., Prob(X > ujY > v), or the joint probability of the
extremes of both variables, i.e., Prob(X > u,Y > v). These
approaches have the potential to quantify interesting and
high-impact hydrologic relationships, for example, the
dependence among precipitation or temperature extremes
in space or time.

To measure spatial dependence in a spatial random field
from grid-based observations, we use, because of the high-
dimensionality of the problem, a concept of pairwise bivar-
iate dependence coefficients, i.e., one single dependence
parameter is assigned to each pair of grids. To distinguish
between extreme and non-extreme observations, the depen-
dence measure in this study is defined in two ways. The first
one is copula correlation, i.e., the correlation parameters of
an elliptical copula, which measures dependence among just
precipitation values. This copula correlation (also called cor-
relation in this study) is used as a robust dependence mea-
sure; note that estimation of copula correlation is based on
Kendall’s s. The second one is tail dependence which means
dependence among precipitation extremes defined as excee-
dances over a certain threshold. This represents the proba-
bility that an observation at one grid exceeds a large
quantile, which is called threshold, given the observation
at the other grid also exceeds a quantile of the same proba-
bility level [9]. The methodological contributions of this
study are twofold. First, the proposed approach represents
an extension of estimating multivariate extremal dependence
suggested by Kuhn [1, Chapter 3] as this method is applied to
high-dimensional geospatial and geospatial-temporal data
(including the reduction of measuring dependence through
a dependence function to a set of pairwise bivariate depen-
dence coefficients). Second, the methods have been designed
for automated dependence quantification among large-scale
geospatial–temporal data without having to tailor the anal-
ysis for individual time series within pairs of grids.

Earlier domain-specific studies either applied univariate
extreme value theory to large areas by analyzing each area
separately [12,13] or spatial dependence among extremes to
smaller regions [14,15]. Schlather and Tawn [15] analyzed
daily and annual precipitation maxima in south-west Eng-

land for investigating spatial extremal dependence. Previ-
ous studies dealt with the spatial and temporal variability
of precipitation extremes with applications to small areas
in South America [16,17]. We did not encounter a single
study focussing on the spatial dependence among precipita-
tion extremes in South America. This study investigates the
spatial and temporal variability of dependence among pre-
cipitation extremes in South America for the period 1940–
2005. An extreme event is defined here as an event exceed-
ing 95%-quantile threshold. Previous studies have used
high quantiles of empirical distributions as thresholds
[18,19]. This study compares the correlation and tail depen-
dence as functions of one- and two-dimensional distance
(longitudinal and latitudinal distances) from observations
and simulations from the Community Climate System
Model version 3 (CCSM3) over South America for the per-
iod 1940–2005. The spatial and temporal correlation and
tail dependence between one specific grid in the Amazon
basin, Brazilian Highlands, Mato Grasso Plateau, and
São Paulo, with all other grids in South America, are esti-
mated as well as compared for the observed and simulated
data. The temporal variability is investigated from 1965–
2005 by considering two overlapping time windows, i.e.,
1965–1990 and 1980–2005. Predictive scenarios are gener-
ated for the correlation and tail dependence by utilizing
CCSM3 model simulations from 2060–2099.

Section 2 describes both observed and simulated data in
South America and discusses a procedure for choosing the
best data out of daily, weekly maxima, and weekly maxima
residuals, which can satisfy the assumptions of extreme
value analysis. Weekly maxima residuals are obtained by
subtracting the long-term mean of weekly maxima of a par-
ticular week, i.e., mean of maximum weekly precipitation
across the same week for all years used in the analysis, from
weekly maxima of the same week. These datasets are com-
pared based on the temporal dependence in the data using
both autocorrelations and a comparison of the arrival
times of exceedances over 95%-quantile thresholds with a
homogeneous Poisson process. A simple statistic for the lat-
ter is also described in Section 2. Section 3 outlines meth-
ods for estimating the spatial dependence from the
observed and simulated data using Kendall’s s for correla-
tion, inverse ranks for extreme dependence structure, and
tail dependence for extreme dependence measure. Section
4 describes the results obtained using the above mentioned
methods for the observed and simulated data. The impor-
tant insights, impacts of this study, and future research
directions are discussed in Section 5.

2. Data availability and preparation

2.1. Data description

The daily precipitation datasets in South America are
utilized in this study which are available in a gridded form
of 10 · 10 for the period between January 1940 and June
2005 [20]. The data were collected at 7900 stations spread
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over Brazil, Venezuela, North Argentina, Paraguay, Uru-
guay, Suriname and French Guiana. The daily precipitation
at each grid was calculated by averaging daily precipitation
at all stations within a radius of 0.75 times the grid spacing.
The complete description of the data used in this study is
available in [20]. At all grids in South America, the total
number of observations used here are shown in Fig. 1.
Recently, Goswami et al. [21] investigated trends of extreme

rainfall events in India by analyzing daily gridded rainfall
data at 10 · 10 resolution based on 1803 stations.

This study also analyzes the model simulation results
from January 1940 to December 2099 obtained from
CCSM3 which is described by Collins et al. [22]. CCSM3
is a fully coupled climate model which includes compo-
nents that represent the land, atmosphere, ocean, and sea
ice. The model configuration uses a T85 grid for the land
and atmosphere, which is approximately 1.4 degrees lati-
tude and longitude, and approximately 1 degree resolution
in the ocean and sea ice components. Daily precipitation
results from one ensemble member of the A2 IPCC climate
change scenario simulation are used for this analysis. The
model simulation data obtained from Program for Climate
Model Diagnosis and Intercomparison (PCMDI) includes
the simulation years from 2000 to 2100. A number of other
studies used similar CCSM precipitation data: Branstetter
and Erickson [23] investigated the effects of precipitation
characteristics on streamflow in CCSM2, Meehl et al. [24]
examined precipitation intensity in CCSM3, and Boville
et al. [25] described precipitation processes in CCSM3.

2.2. Temporal dependence in data

In order to estimate the spatial dependence among
extremes using statistical techniques, we first need indepen-
dent and identically distributed (IID) observations (or at
least observations with only weak dependence). The
assumption of identically distributed data is violated if the
data contain long-term trend or seasonality whereas the
temporal dependence in the data violates the assumption

Fig. 1. Total percentage of data, given as 100*(number of observations)/

(total number of possible observations from 1940–2005 available for the

analysis).

Fig. 2. Daily time series for four grids whose locations are given in terms of (longitude, latitude). The total number of observations at (298,�40),
(298,�37), (298,�25), (298,�9) are 7004, 15641, 6940, and 9024, respectively.
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of independent data [26]. We investigate the daily data to
check if the IID assumptions are valid. We choose four arbi-
trary grids (Fig. 2), whose locations are given in terms of
(longitude, latitude) as (298,�40), (298,�37), (298,�25),
and (298,�9), for preliminary analyses and present initial
insights into the interpretability of the results. Autocorrela-
tion plots show that there is a significant temporal depen-
dence in the daily data (Fig. 3). Schlather and Tawn [15]
analyzed daily and annual precipitation maxima in south-
west England and stated that caution should be exercised
while analyzing the extremes of daily data because of tem-
poral dependence although the daily data does contain
additional information. Therefore, we do not consider the
daily data for our analysis. Next, we aggregate daily data
into weekly maxima, shown for four grids in Fig. 4, to check
if the temporal dependence can be reduced by this proce-
dure. But weekly maxima data do not show any improve-
ments in the temporal dependence (Fig. 5). So, we rule
out the possibility of analyzing weekly data in this study.

Next, we use a brute force method described by Gaines
and Denny [26] to generate weekly maxima residuals by
subtracting the long-term mean of weekly maxima of a par-
ticular week, i.e., mean of maximum weekly precipitation
across the same week for all years used in the analysis, from
weekly maxima of the same week. Let X ði;jÞy;w be the maximum
precipitation at grid (i, j) in week w of year y. The mean of
the weekly maxima of week w considering all years y (ignor-
ing missing values) is computed as M ði;jÞ

w ¼ ð]fy : X ði;jÞy;w

not missinggÞ�1P2005
y¼1940X ði;jÞy;w ; w ¼ 1; . . . ; 52. Then, the

residuals of weekly precipitation can be computed as
eði;jÞy;w ¼ X ði;jÞy;w �M ði;jÞ

w , i.e., the precipitation value at any given

week in any specific year is reduced by the mean of that
week over all available years. By abbreviating the time
(y,w) by t, the residuals can be represented as eði;jÞt . Autocor-
relation plots from weekly maxima residuals indicate that
the temporal dependence in this data is significantly reduced
as compared to daily and weekly maxima (Figs. 3, 5, and 6).
While the simple data transformation utilized here removes
the weekly mean, an added transformation is also utilized to
normalize by the weekly standard deviation, i.e, eði;jÞy;w ¼
ðX ði;jÞy;w �M ði;jÞ

w Þ=Sði;jÞw , where Sði;jÞw is the standard deviation
of week w considering all years for grid (i, j). In general,
the requirement is to generate high-quality models of rain-
fall time series at each spatial location, such that the resid-
uals do not contain any significant temporal structure,
whether in the mean or in the variance. While these areas
are left for future research, we note that even the relatively
simple weekly mean removal transformation reduces the
autocorrelation in the time series significantly (Fig. 6a). A
simple normalization by the standard deviation does not
indicate any significant reduction in the autocorrelation
(Fig. 6b).

The removal of the weekly means may imply that the
residuals and their extremes lose the typical physical inter-
pretability associated with them because seasonal fluctua-
tions are removed from the extremes. In this study, the
extremes of the residuals represent those extremes that
are large enough compared to what could be typically
expected for a given week for a given spatial location. In
this sense, the selected thresholds are local, not only in
space but also in time. In this study, the maxima in precip-
itation, and hence the thresholds, are significantly larger
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Fig. 3. Daily time series showing 10 years of data for four grids and their autocorrelation plots.
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compared to the seasonal variations, thus even the loss of
physical interpretation is minimal. Thus, the reduction by
the weekly mean is a worthwhile tradeoff given the gain
in applicability of extreme value theory, as evidenced by
the reduction in autocorrelation while moving from weekly
maxima to weekly maxima residuals (Figs. 5 and 6). There-
fore, this study utilizes weekly maxima residuals generated
from eði;jÞy;w ¼ X ði;jÞy;w �M ði;jÞ

w for the analysis. Kunkel et al. [27]
analyzed weekly precipitation totals generated from daily
data for understanding the spatial and temporal character-
istics of extremes in the Midwest of US whereas Yates et al.
[28] investigated the spatial and temporal dependencies
of the climate variables by utilizing weekly precipitation
residuals.

2.3. Check for IID assumptions of threshold exceedances

The focus of this study is to investigate the spatial
dependence among precipitation extremes. In order to esti-
mate the spatial dependence among extremes, we first
check the IID assumptions of exceedances over a large
threshold defined as 95%-quantile. If the exceedances over
a large threshold are IID, their inter-arrival times follow a
homogeneous Poisson process and the excesses over a
threshold follow a generalized Pareto distribution (GPD)
[3, Chapter 7].

This study checks if the inter-arrival times of threshold
exceedances follow a homogeneous Poisson process.
According to the definition of homogeneous Poisson pro-
cess, the inter-arrival times of threshold exceedances should
be exponentially distributed. In order to compare the dis-
tribution of the inter-arrival times with the exponential dis-
tribution, we use the goodness-of-fit statistic DSP, which is
suggested by Michael [29] and based on the stabilized prob-

ability plot. Let k inter-arrival times of threshold excee-
dances be t1, . . . , tk and t1 < � � � < tk be an ordered sample
drawn from an exponential distribution, whose cumulative
distribution function is given as F0(t,k) = 1 � e�kt for
t P 0. The stabilized probability plot consisting of coordi-
nates (ri, si) is given as

ri ¼
2

p
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k
i� 1

2

� �s
;

si ¼
2

p
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k̂
F 0ðti; k̂Þ

s
;

where k̂ is the maximum likelihood estimator of k under an
exponential distribution. The stabilized plot indicates the
departures of the theoretical values by the deviations of
the plotted points from a line joining (0,0) and (1, 1) [30].
Michael [29] mentioned that the variances of plotted points
are approximately equal from the stabilized plot and this
property motivated the definition of a goodness-of-fit sta-
tistic, DSP, given as

DSP ¼ max
i¼1;...;k

jri � sij;

which removes the subjectivity in the interpretation of sta-
bilized plots by measuring the maximum deviation of the
plotted points from their theoretical values. DSP is analo-
gous to the standard Kolmogorov–Smirnov statistic but it
is more powerful [29,31]. We use DSP to measure the maxi-
mum deviation of the inter-arrival times of threshold excee-
dances from an exponential distribution. DSP can be
compared with critical values D�SP, which is obtained as
some sample quantile recorded from m number of samples
of sample size n [30]. For normal, logistic, Cauchy, and dou-
ble exponential distributions, Coles [30] calculated D�SP as
95%-quantile of 10000 samples of size 10, 25, and 40 data
points. Since this study analyzes 1053 grids, we consider
1000 samples for the calculation of D�SP in the interests of
computational tractability. We generate 1000 independent

0 50 100 150 200

0.
0

0.
4

0.
8

Lag (weeks)

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

A
ut

oc
or

re
la

tio
n

0 50 100 150 200

0.
0

0.
4

0.
8

0 50 100 150 200

0.
0

0.
4

0.
8

0 50 100 150 200

0.
0

0.
4

0.
8

Lag (weeks)

0 50 100 150 200
0.

0
0.

4
0.

8

Lag (weeks)

Lag (weeks) Lag (weeks)

Lag (weeks) Lag (weeks)

0 50 100 150 200

0.
0

0.
4

0.
8

0 50 100 150 200

0.
0

0.
4

0.
8

0 50 100 150 200

0.
0

0.
4

0.
8

Lag (weeks)

(298,-40)

(298,-37)

(298,-25)

(298,-9)

Fig. 6. Weekly maxima residuals: autocorrelation plots for four grids.
Weekly maxima residuals are generated from (a) eði;jÞy;w ¼ X ði;jÞy;w �M ði;jÞ

w and
(b) eði;jÞy;w ¼ ðX ði;jÞy;w �M ði;jÞ

w Þ=Sði;jÞw . Since we do not observe any significant
changes from (b) if compared with (a), we utilize (a) to generate weekly
maxima residuals for this study.
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samples of sample size n and consider each sample to calcu-
late D0SP from the inter-arrival times of exceedances over
95%-quantile threshold. Next, we consider 1000 D0SPs to
compute D�SP, which is given as the 95%-quantile. In order
to compare DSP and D�SP, we define a simple measure as

DSP ¼
DSP

D�SP

:

If DSP > 1, we reject with 95% confidence that the inter-
arrival times of threshold exceedances are exponentially
distributed, hence the inter-arrival times of threshold excee-
dances do not follow a homogeneous Poisson process. If
DSP 6 1, we do not reject the assumption that the inter-
arrival times of threshold exceedances follow a homoge-

neous Poisson process. This study uses DSP at all 1053 grids
because it can be easily computed, plotted and visualized in
space for comparisons.

Weekly maxima residuals and the corresponding
QQ-plots of the inter-arrival times of threshold excee-
dances against the exponential distribution are shown in
Fig. 7 for the four grids. It is observed that the inter-arrival
times match the exponential distribution quite well except

for the grid (298,�25) where there is still evidence of signif-
icant clustering. We note that clustering in this case means
that large precipitation events in one week are more likely
to be followed by large events in the consecutive week. DSP

for daily and weekly maxima residuals from observations,
and for weekly maxima residuals from CCSM3 simulations
are shown in Fig. 8. We observe significant improvements
in DSP from weekly maxima residuals as compared to daily
data. From weekly maxima residuals, the major parts of
South America indicate DSP 6 1 which also emphasizes
our point of using weekly maxima residuals for the analy-
sis. While DSP described here is rather rigorous, the IID

constraints may need to be relaxed for real-world applica-
tions from pragmatic considerations. However, the fact
that the value of this statistic exceeds unity at some parts
of South America does indicate a need for caution while
interpreting the results.

As described earlier, the presence of temporal depen-
dence in the precipitation time series implies that the extre-
mal insights need to be interpreted carefully. We note that
the problem of completely extracting the temporal depen-
dence from precipitation time series has been a challenging
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which extremes occur.
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problem for hydrologists and statisticians. Previous studies
have dealt with the problem of temporal dependence in the
context of extreme value analysis [4–6,32–36]. A few of
these studies modeled non-stationarity in time for univari-
ate analysis by defining the GPD parameters as functions
of time [4–6]. This procedure is not straightforward for
the estimation of spatial dependence, since the standard
approach requires spatial data which are independent in
time. Since this study analyzes 1053 grids, it is not feasible
to find the best model corresponding to each grid which
can satisfy the IID assumptions for rigorous applications
of extreme value theory. For this reason, this study utilizes
a simple model, even though more rigorous models and
powerful testing methods for model selection can be used
on a grid-by-grid basis.

3. Spatial dependence analysis

3.1. Kendall’s s, copula, and elliptical copula

Kendall’s s: A rank-based dependence measure, such as
Kendall’s s, can be utilized to estimate the dependence
among precipitation residuals. If (X,Y) � F is a pair of ran-
dom variables with distribution F and ðeX ; eY Þ � F is inde-
pendent of (X,Y) (and with the same distribution F),
Kendall’s s between X and Y is defined as

s :¼ PððX � eX ÞðY � eY Þ > 0Þ � P ððX � eX ÞðY � eY Þ < 0Þ:

Given an IID sample (X1,Y1), . . . , (Xn,Yn), the empirical
estimator of Kendall’s s is
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Fig. 8. Goodness-of-fit statistic, DSP, of inter-arrival times of exceedances over 95%-quantile against exponential distribution for the whole South
America. Top row: Observed daily data, Middle row: Observed weekly maxima residuals, and Bottom row: Simulated weekly maxima residuals from the
CCSM3 climate model.
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ŝ :¼ 2

nðn� 1Þ
X

16i<j6n

signððX i � X jÞðY i � Y jÞÞ: ð1Þ

Kendall’s s is more robust compared to linear correlation
in the following ways: (a) It does exist even if the first or
second moments of (X,Y) do not exist; (b) A single outlier,
or a few outliers, cannot lead to misleading values for the
estimator; and (c) It is invariant under strictly increasing
transformations (as opposed to being invariant only under
strictly increasing linear transformations). Detailed infor-
mation about Kendall’s s is given in [37].

Copula: Let X = (X1, . . . ,Xd)T be a random vector with
distribution function F and continuous margins F1, . . . ,Fd.
By Sklar’s theorem [38,39], there exists a unique copula
C : [0, 1]d! [0, 1] such that F(x) = C(F1(x1), . . . , Fd(xd)),
x ¼ ðx1; . . . ; xdÞT 2 Rd . The copula is a d-dimensional distri-
bution function with standard uniform margins. According
to Sklar’s theorem, a distribution can always be separated
into its margins and copula. The copula can be interpreted
as the dependence structure of the distribution. Therefore,
the margins can be ignored in order to analyze the depen-
dence structure of a random vector.

Elliptical copula: A random vector X = (X1, . . . ,Xd) has
an elliptical distribution, if

X ¼d lþ GAU ðdÞ; ð2Þ
where l is a deterministic d-dimensional vector; G > 0 is a
random variable; A is a deterministic d · d matrix with
AAT :¼ R = (rij)16i,j6d and rank(R) 6 d; U(d) is a d-dimen-
sional random vector uniformly distributed on the unit
hyper-sphere Sd :¼ fz 2 Rd : zTz ¼ 1g; and U(d) is inde-
pendent of G. An elliptical copula is defined as the copula
of an elliptically distributed random vector. Due to the
invariance of copulas under strictly increasing transforma-
tions, an elliptical copula can be uniquely characterized
by the correlation matrix R = (qij)16i,j6d:¼[diag(R)]�1/2

R[diag(R)]�1/2 and the distribution of the generating vari-
able G (unique up to some positive constant). This correla-
tion is the linear correlation only if the entire distribution
(and not just the copula) is elliptical and if the first and sec-
ond moments exist. Hence, if the copula is elliptical but the
distribution is not elliptical, this correlation measure does
not necessarily convey any information about the linear
correlation of the random vector. Therefore, this depen-
dence measure may be referred to as a copula correlation.
In case of an elliptical copula (with Prob(G = 0) = 0), cop-
ula correlation and Kendall’s s are related as

qij ¼ sinðsijp=2Þ; 1 6 i; j 6 d; ð3Þ
where (qij)16i,j6d is the copula correlation matrix [40]. A
correction term can be introduced if Prob(G = 0) 5 0
[40]. Using Eqs. (1) and (3), the copula correlation can be
estimated using Kendall’s s by retaining all the robustness
properties of Kendall’s s estimator, i.e.,

q̂ij :¼ sinðŝijp=2Þ; 1 6 i; j 6 d: ð4Þ
There are several other (standard) dependence measures,
such as Pearson linear correlation or the rank-based Spear-

man’s rho. The Pearson linear correlation has the draw-
back of being only a linear dependence measure, and it is
inappropriate and misleading in the case of multivariate
log-normal distribution [41]. Also, this estimator is only de-
fined for finite first and second moments. Both Kendall’s s
and Spearman’s rho are rank based, and therefore copula
dependence measures make them invariant under strictly
increasing transformations of the margins. Both of them
usually show similar behavior and estimation values. How-
ever, for an elliptical copula a relation like Eq. (3) does not
hold in the case of Spearman’s rho [40]. The behavior of
several correlation estimators is given in [42]. Consistency
and asymptotic normality of the Kendall’s s based correla-
tion estimator q̂ ¼ sinðŝp=2Þ are derived in [1, Theorem
4.4.9]. The confidence bounds for q̂ are not derived here.
The estimator of the asymptotic covariance matrix of q̂ is
defined in [1, Definition 4.4.10] and its consistency and
asymptotic normality are shown in [1, Theorem 4.4.11].

3.2. Tail dependence function of an elliptical copula for

extreme dependence measure

A standard approach to measure dependence among
extremes is given through multivariate extreme value theory

(MEVT) and the componentwise block maxima approach
therein. We give a short overview of the probabilistic the-
ory of dependence among extremes and point to Resnick
[43], Hsing et al. [44], and Einmahl et al. [45] for more
details. Given an IID sequence of d-dimensional random
vectors Xi = (Xi,1, . . . ,Xi,d)T, 1 6 i 6 n, the componentwise
block maxima are defined as

M1 ¼ ðX 1;1; . . . ;X 1;dÞT and

Mn ¼ ðMn;1; . . . ;Mn;dÞT ¼
_n
i¼1

X i;1; . . . ;
_n
i¼1

X i;d

 !T

; n > 1;

where ‘¤’ denotes the maximum among the arguments.
Assume there exists sequences an,j > 0 and bn;j 2 R, 1 6
j 6 d, such that

P a�1
n;1ðMn;j� bn;jÞ6 xj;16 j6 d

� �
!n!1Hðx1; . . . ;xdÞ ¼: HðxÞ;

x2Rd ;

where H is a non-degenerate d-dimensional distribution
function. Then, any possible limit H is called multivariate

extreme value distribution function (MEVDF). It can easily
be shown that a cumulative distribution function (CDF) H

is a MEVDF if and only if the marginals Hj, 1 6 j 6 d, are
one-dimensional extreme value CDFs [46] and the copula
C of H is an extreme value copula, i.e., it satisfies [38, Sec-
tion 6.2]

Ctðu1; . . . ; udÞ ¼ Cðut
1; . . . ; ut

dÞ; ðu1; . . . ; udÞ 2 ½0; 1�d ; t > 0:

It is also known that any extreme copula can be written in
terms of the Pickands representation [43, Section 5.4], i.e.,
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Cðu1; . . . ; udÞ ¼ exp

Z
Sd

d̂

j¼1

wjðln ujÞ
 !

lðdwÞ
( )

;

ðu1; . . . ; udÞ 2 ½0; 1�d ; ð5Þ

where ‘§’ denotes the minimum among the arguments and
l is a finite measure on the unit simplex Sd ¼ fs P 0 :Pd

j¼1sj ¼ 1g satisfyingZ
Sd

wlðdwÞ ¼ 1; j ¼ 1; . . . ; d:

Changing the variable w in the integral in the Pickands’
representation as shown in Eq. (5), the extreme copula
can be described in infinitely many different but equivalent
forms, e.g., Einmahl et al. [45] adopts the following repre-
sentation for the bivariate case:

Cðu1; u2Þ ¼ exp

Z p=2

0

ln u1

1 _ cot h
^ ln u2

1 _ tan h

� �
UðdhÞ

� �
;

u1; u2 2 ½0; 1�;

where U is a finite measure (called spectral measure) on
[0,p/2] satisfyingZ p=2

0

ð1 _ tan hÞUðdhÞ ¼
Z p=2

0

ð1 _ cot hÞUðdhÞ ¼ 1:

One aim of this study is to estimate and visualize the
spatial dependence among precipitation extremes. Since
we consider a very high dimensional data set with 1053
dimensions, dependence representations through some
(d � 1)-dimensional measure l or a spectral measure is dif-
ficult to handle both for estimation and visualization.
Therefore, we focus on the pairwise bivariate dependence
concept called tail dependence coefficient. Pairwise bivariate
dependence parameters lead to a dependence matrix like
correlation but here in terms of extremal dependence.
For the notion of tail dependence coefficient, we first need
another equivalent representation of extremal dependence,
i.e., the tail dependence function which is defined for a ran-
dom vector X with CDF F and margins Fj, 1 6 j 6 d,
through the limit as

kXðx1; . . . ;xdÞ :¼ lim
t!0

1

t
P ð1�F 1ðX 1Þ6 tx1; . . . ;1�F dðX dÞ6 txdÞ;

with x1, . . . ,xd P 0 and if the limit exists. The (pairwise
bivariate) tail dependence coefficient between components
Xi and Xj, 1 6 i,j 6 d, is defined as

kX
i;j :¼ kXð1; . . . ;1; 1;1; . . . ;1; 1;1; . . . ;1Þ

¼ lim
t!0

1

t
P ð1� F iðX iÞ 6 t; 1� F jðX jÞ 6 tÞ

¼ lim
t!0

P X j P F j ð1� tÞ X i P F i ð1� tÞ
		� �

; ð6Þ

where F j denotes the generalized inverse of Fj and if the
limit exists. Note that the last line in Eq. (6) represents
the usual definition of the tail dependence coefficient, e.g.,
see [38] (the only difference is that we use ‘P’ whereas Joe’s
definition uses ‘>’). When d = 2, the tail dependence func-

tion, i.e., kX(x,y), can be estimated non-parametrically
through bivariate extreme value theory (see [45] and refer-
ences therein). In addition, parametric models for the tail
dependence function have been suggested and estimated
[47,48,3]. The non-parametric and parametric estimation
of tail dependence functions have been typically investi-
gated for d = 2 only, even though both approaches can
be theoretically applicable for d > 2. For higher dimen-
sions, the non-parametric estimation of tail dependence is
given in [44].

One intuitive interpretation of the tail dependence coef-
ficient can be given in terms of t-year return levels. If Xi and
Xj are two locations with continuous and strictly increasing
CDFs and t-year return levels zi and zj, respectively, i.e.,
P(Xi > zi) = P(Xj > zj) = 1/t, then

PðX i > zi;X j > zjÞ ¼
1

t
P ðX j > zjjX i > ziÞ �

kX
i;j

t
; as t!1;

i.e., the event that both locations Xi and Xj exceed their
t-year return levels simultaneously is approximately a
ðt=kX

i;jÞ-year event, if t is sufficiently large. Note that the no-
tion a(t) � b(t) as t!1 means limt!1[a(t)/b(t)] = 1. This
representation through tail dependence coefficients for a
random vector X leads to a tail dependence matrix given as

KX :¼

kX
1;1 � � � kX

1;d

kX
2;1 � � � kX

2;d

..

. . .
. ..

.

kX
d;1 � � � kX

d;d

0BBBBB@

1CCCCCA:

We next focus on the estimation of tail dependence coeffi-
cients. Given an IID sample (X1,i,X1,j), . . . , (Xn,i,Xn,j), the
standard empirical estimator for the bivariate tail depen-
dence function between the two components Xi and Xj with
CDFs Fi and Fj, respectively, is defined as

bkemp
i;j ðxi;xj;kÞ :¼ 1

k

Xn

l¼1

I 1� bF iðX l;iÞ6
k
n

xi;1� bF jðX l;jÞ6
k
n

xj

� �
;

ð7Þ

where bF i and bF j denote the empirical distributions of
{Xl,i}16l6n and {Xl,j}16l6n, respectively, and for n!1,
k = k(n)!1 and k/n! 0. Hence, the standard empirical
estimator for the tail dependence coefficient between Xi and
Xj is given through bkemp

i;j ð1; 1; kÞ. But estimation in extreme
value theory is always tricky and results are unstable and
sensitive with respect to k. Also, the optimal choice of k

is still an unresolved problem. Peng [49] described one
method to choose an optimum k and this method was ex-
tended by Einmahl et al. [50] recently.

This study uses an another approach to improve the esti-
mation of the tail dependence coefficient through a semi-
parametric model for the tail dependence function (see [1]
for more details). We assume that the tail dependence func-
tion (not the complete distribution) of (Xi,Xj) is the same as
the tail dependence function of an elliptical copula which is
the copula of an elliptical random vector Gi,jAi,jU

(2) with
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copula correlation coefficient qi,j (see Eq. (2) with explana-
tions below) and the generating variate Gi,j is regularly
varying with index ai,j, i.e., PðGi;j < txÞ=P ðGi;j > tÞ !t!1

x�ai;j . Given these assumptions, the tail dependence func-
tion as shown in [1] (Chapter 3) is given as

kX
i;jðx;yÞ ¼ kElðx;y;ai;j;qi;jÞ

¼ x
Z p=2

gi;jððx=yÞ1=ai;j Þ
ðcos/Þai;j d/þ y

Z p=2

gi;jððx=yÞ�1=ai;j Þ
ðcos/Þai;j d/

 !

�
Z p=2

�p=2

ðcos/Þai;j d/

 !�1

; ð8Þ

where gi;jðtÞ ¼ arctanððt � qi;jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

i;j

q
Þ and qi,j is the

copula correlation coefficient between Xi and Xj.
Some remarks on the tail dependence function of an ellip-

tical copula are given as follows: (a) The multivariate repre-
sentation of the tail dependence function kEl(x,R,a) of an
elliptical copula is also shown in [1] and only depends on
the arguments x = (x1, . . . ,xd) P 0, the copula correlation
matrix R and the regular variation index a; (b) In case of a
Gaussian copula, G2 � v2

d and, hence P ðG > txÞ=P ðtÞ !t!1

0 ¼ x�1 for all x > 0 and, therefore, kX
i;jðxi; xjÞ ¼ 0 for all

xi,xj P 0 and if qi,j < 1. In such a case where k � 0, the ran-
dom vector (and its components) are called asymptotically

independent, otherwise they are called asymptotically depen-

dent; (c) An example of an elliptical copula with 0 < a <1 is
the tm-copula, i.e., the copula of the (tm)-distribution of the
random vector AZ=

ffiffiffiffiffiffiffiffiffi
v2

m=m
p

, where A is some deterministic
matrix, Z is a standard normal vector, m > 0 and v2

m is a v2
m-

distributed random variable. If R be the corresponding cop-
ula correlation matrix, the tail dependence function is
kEl(Æ,R,m) for this tm-copula; (d) We do not require observa-
tion being heavy-tailed or multivariate regularly varying
(see [43] for the latter term). We only require that the tail
dependence function is the same as derived from an elliptical
copula where the corresponding elliptical distribution satis-
fies some conditions on regular variation.

The whole procedure for the estimation of the tail
dependence function can be briefly described as follows:
(i) Estimate copula correlation, q̂i;j defined in Eq. (4), using
all the data; (ii) Estimate the empirical tail dependence
function, k̂emp

i;j ðx; y; kÞ as shown in Eq. (7), for some (x,y)
using all the data above the 95%-quantile threshold, and
(iii) ai,j is estimated through inversion of the (theoretical)
tail dependence function given in Eq. (8). These steps are
repeated for several pairs (x,y) leading to set of (partial)
ai,j estimators. The final ai,j-estimator is then defined as a
weighted mean of the partial ai,j-estimators with some
weight function w and denoted by âi;jðk;wÞ. Note that
not all combinations of positive (x,y) can be used for esti-
mation since the tail dependence function is homogeneous
and not invertible everywhere. A choice of different (x,y)
and a weight function w are given in [1]. Finally, the tail
dependence estimator is defined as

k̂X
i;jðk;wÞ :¼ kElð1; 1; âi;jðk;wÞ; q̂i;jÞ:

This particular estimator is much smoother than the stan-
dard empirical estimator since more points are considered
for its estimation. Note that this estimator is mainly
determined by the empirical estimators bkempðx; y; kÞ and
the theoretical tail dependence function kEl is only used
to interpolate between them for different (x,y). The
asymptotic properties of this estimator have been de-
scribed and compared with the standard empirical estima-
tor in [1].

Often, estimation of (theoretically) small tail depen-
dence has some bias, i.e., tail dependence is overestimated.
In this case, a large bias may occur because convergence
towards the limit is slow and occurs very far out in a region
where no data are available. For example, in the analysis
done later, it may be reasonable to assume no tail depen-
dence between locations which are more than 2000 km
apart even though some of these locations do show some
dependence based on our estimates.

We provide a couple of reasons in the defence of our
approach based on the tail dependence function of an ellip-
tical copula. First, elliptical copulas provide a large class of
copulas which are very flexible and easy to handle (also in
high dimensions). Other classes of copulas suffer especially
in higher dimensions since they have a very restricted set of
dependence parameters, like the class of Archimedean cop-

ulas [39]. Second, in order to improve (and smooth) the
standard empirical estimator through interpolation, we
need some parametric tail dependence functions. Of course,
one can choose commonly used parametric tail dependence
function from another copula, e.g., Gumbel copula, or just
use the standard empirical tail dependence estimator. Com-
parisons between tail dependence estimators are given by
Frahm et al. [51].

3.3. Parallel computational implementations

For this study, we develop an R code base for estimating
dependence among extreme values from time series
between pairs of spatial grids. The dependence is geospatial
in the sense that grid pairs in space are investigated, while
the temporal aspect comes in since we use time series obser-
vations at each grid and because multiple time windows are
utilized. The number of grids, i.e., 1053, and the temporal
windows, result in more than half a million pairs for which
the dependence measure needs to be computed. In addi-
tion, the computations need to be performed for both
observations and climate model simulations. However,
the dependence measures between each pair are computed
once, and subsequently these measures can be utilized to
display and visualize the results in various ways such that
they make sense to hydrologic and climate modelers. The
leadership class computing facilities available at the Oak
Ridge National Laboratory are utilized for the computa-
tions of the dependence measures. The problem is parallel-
ized with relative ease and hence the computations are split
into smaller chunks. Each computation job is programmed
in such a way that they can leverage hundreds of CPUs
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(multiple processes with multiple CPUs per process). The
significant computational challenge presents interesting
research challenges which can be investigated in depth in
follow-up studies. However, for this specific study, the
computational challenges preclude a detailed uncertainty
analysis, as well as the dependence among other observa-
tions and climate variables. Future efforts will need to
investigate these issues in much more depth.

4. Results

4.1. Correlation and tail dependence among four grids

4.1.1. Correlation for dependence among precipitation
residuals

The overall correlation in the weekly maxima precipita-
tion residuals are investigated first. The pairwise plots of
the four grids shown in Fig. 9 suggest that linear correlation
may not be an appropriate choice for a dependence measure.
Thus, for reasons described earlier, Kendall’s s has been uti-
lized to estimate dependence among precipitation residuals.

Correlation can be estimated by plugging Kendall’s s in Eq.
(4). Correlation between (298,�40) and (298,�37) is high
because these grids are closely located whereas there is no
correlation among other grids as shown in Table 1.

4.1.2. Inverse ranks for extreme dependence structure
The inverse ranks method is used to explore and visualize

the dependence structure among precipitation extremes
between four grids. Given the time series of the residuals
eði;jÞ1 ; . . . ; eði;jÞn , let eði;jÞð1;nÞ > eði;jÞð2;nÞ > � � � > eði;jÞðn;nÞ denote the order

statistics. Further, let Rði;jÞt be the rank corresponding to

observation eði;jÞt , i.e., Rði;jÞt ¼ k if and only if eði;jÞt ¼ eði;jÞðk;nÞ.
Then, based on Example 4.3 in [44], ð1=Rði1;j1Þ

t ;1=Rði2;j3Þ
t Þ16t6n

are plotted for all pairs (i1, j1), (i2, j2) 2 {(298,�40),
(298,�37), (298,�25) and (298,�9)}, (truncated by points
close to (1,1) for easy viewing) as shown in Fig. 10. Such plots
give an insight in the complete extreme dependence structure
between datasets, i.e., points close to the axes indicate inde-
pendent extremes whereas points away from the axes show
the dependence structure of extremes. For grids (298,�40)
and (298,�37) most of the observations lie close to the axes
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Fig. 9. Scatter plots of weekly maxima precipitation residuals in mm for four grids.
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but some observations also lie away from the axes, i.e., if a
large rainfall is observed at one of these grids, it is likely in
some cases to observe a large rainfall at the other grid. The
extreme dependence between grid (298,�40) and
(298,�25) or (298,�9) is weak, i.e., most of the extremes
occur independently. Moreover, this plot shows a quite sym-
metric extreme dependence structure, hence it is reasonable
to model this with a symmetric model like an elliptical copula
described in Section 3.1.

4.1.3. Tail dependence for extreme dependence measure

The tail dependence is used for quantifying the pairwise
dependence among precipitation extremes corresponding
to the four grids. Table 1 shows some dependence in the
extremes between nearby grids (298,�40) and (298,�37)
but almost no tail dependence between the others. If we
assume that tail dependence decays with spatial distance,
it is probably not reasonable to assume any tail dependence
between (298,�40), (298,�25), and (298,�9) due to large

Table 1
Correlation based on Kendall’s s and tail dependence given in [ ] between the four grids

Grid (298,�40) (298,�37) (298,�25) (298,�9)

(298,�40) 1.0 [1.0] 0.518 [0.268] 0.017 [0.031] 0.050 [0.045]
(298,�37) 0.518 [0.268] 1.0 [1.0] 0.059 [0.074] 0.026 [0.053]
(298,�25) 0.017 [0.031] 0.059 [0.074] 1.0 [1.0] �0.023 [0.088]
(298,�9) 0.050 [0.045] 0.026 [0.053] �0.023 [0.088] 1.0 [1.0]

Correlation and tail dependence between two closely located grids, i.e., (298,�40) and (298,�37), are high whereas correlations among other grids are
close to zero and tail dependences among other grids seem to be overestimated.
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Fig. 10. Inverse ranks, i.e., ð1=Rði1 ;j1Þ
t ; 1=Rði2 ;j2Þ

t Þ16t6n, plots for four grids.
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distance. This indicates possible bias in the estimates. The
problem of asymptotic tail independence, i.e., zero tail
dependence, is not considered here. Methods for detecting
asymptotic tail independence are given in [52,11].

4.2. Correlation and tail dependence with distance in the
whole South America

The variability of dependence, i.e., correlation and tail
dependence, is investigated with respect to one-dimensional
distance, or the spatial proximity alone without regard to
direction or location, for the whole South America. Using
the same approach used earlier for the four grids, two
1053 · 1053-matrices for correlation and tail dependence

are generated. Alternatively, we generate four-dimensional
arrays for correlation, i.e., Corr(lon1, lat1; lon2, lat2), where
lon and lat are longitude and latitude, respectively, and for
tail dependence, i.e., k(lon1, lat1; lon2, lat2), which implies
the correlation and tail dependence between locations with
coordinates (lon1, lat1) and (lon2, lat2). Each pair of grids
(i, j)a and (i, j)b, a 5 b 2 {1, . . . , 1053} are considered and
the distance between them is calculated by using the Hav-

ersine formula. This generates a (1053 Æ 1052/2) · 2 matrix
containing distances and their corresponding correlations
and tail dependences.

Correlation and tail dependence decrease with distance
(Figs. 11a and 11b). In south-west England, Schlather and
Tawn [15] investigated spatial extremal dependence using

Fig. 11. Variation of dependence (correlation and tail dependence) vs. distance for 1940–2005. (a) Observed data: correlation and tail dependence; (b)
Observed data: 10 km moving averages, i.e., the average dependence for distances in an interval (d,d + 10 km), d = 0 km, 10 km, 20 km, . . ., and (c)
CCSM3 simulations: 10 km moving averages, i.e., the average dependence for distances in an interval (d,d + 10 km), d = 0 km, 10 km, 20 km, . . .

2414 G. Kuhn et al. / Advances in Water Resources 30 (2007) 2401–2423



Author's personal copy

daily and annual precipitation maxima and found that it
decays smoothly with distance. The maximum negative cor-
relation is �0.2 for some points located within 6000 km but
the average correlation is close to zero between all points
situated beyond 1700 km. We note that the decay of spatial
correlation with distance, while commonly observed for
geographic data, can have exceptions due to dependence
caused by topography induced atmospheric dynamics as
well as due to long-range teleconnections. However, we
do expect correlations to become negligible on the average
with large distances, which provides the rationale for our
assumption here. In general, care must be taken while
applying this assumption lest valid dependencies are
ignored. The possibility of some positive bias in the tail
dependence estimates appears likely given that the depen-
dence becomes relatively steady when the distance between
grids is greater than 2000 km (Fig. 11b). By subtracting this
(assumed) positive bias of 0.05 from the tail dependence
estimates, it is observed that tail dependence is very close
to zero beyond 1500 km. Analysis of simulations from
CCSM3 for 1940–2005 shows higher values of correlation
and tail dependence compared to that obtained from the
analysis of observations (Figs. 11b and 11c). Correlation
becomes zero whereas tail dependence becomes steady
which suggests a possible positive bias when the distance
between grids is greater than 2000 km (Fig. 11c).

Considering observed data for two time windows 1965–
1990 and 1980–2005, correlation between grids located

within 1700 km increases from 1965 to 2005 (Fig. 12). If
the (assumed) positive bias is taken out from the tail depen-
dence estimates for 1965–1990 and 1980–2005, an increase
in tail dependence is observed between grids located at a
distance less than 1500 km from 1965 to 2005. From
CCSM3 simulations, the correlation and tail dependence
plots for three time windows, i.e., 1965–1990, 1980–2005,
and 2060–2099, are not different from that obtained for
the period 1940–2005 (plots not shown here).

4.3. Correlation and tail dependence with longitudinal and

latitudinal distance in the whole South America

Correlation and tail dependence with longitudinal and
latitudinal distances between grids are investigated here.
For each grid pair, the longitudinal and latitudinal distance
are calculated by accounting for both the distance and the
directionality between the two grids. This generates a
(1053 Æ 1052/2) · 3 matrix containing two-dimensional dis-
tances and their corresponding correlations and tail
dependences.

The spatial dependence, i.e., both correlation and tail
dependence, obtained from observations displays an ellipti-
cal pattern with the longer axis along the latitudinal direc-
tion for the period 1940–2005 (Fig. 13a). This indicates
additional dependence generally along the latitudinal direc-
tion, over and above the dependence caused by geograph-
ical proximity. Since latitudes demarcate climatic zones,
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Fig. 12. Observed data: variation of dependence (correlation and tail dependence) vs. distance for (a) 1965–1990 and (b) 1980–2005. These plots show the
10 km moving averages, i.e., the average dependence for distances in an interval (d,d + 10 km), d = 0 km, 10 km, 20 km, . . .
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and prevailing winds are expected to broadly follow the lat-
itudes, enhanced latitudinal dependence in an average sense
(i.e., when, for example, many spatially lagged grids are
considered in the averaging, or when, for example, large-
scale and long-term dependence is computed) would
appear to be intuitive. However, we would like to add a
note of caution that the above intuition is valid only in
an averaged sense and not at the scale of storms. In fact,
since precipitation is produced by low-level convergence,
a process that acts on scales of hundreds to thousands of
kilometers to draw moisture into the system from all direc-
tions, the presence of strong cyclones/anticyclones is
responsible for changes in the convergence, and not the lat-
itudinal stratification of the winds. Correlation and tail

dependence obtained from CCSM3 simulations for 1940–
2005 display the latitudinal dependence as well (Fig. 13b).
However, correlation and tail dependence based on the
simulated data appear slightly tilted at an angle to the lat-
itudinal structure, which suggests enhanced dependence,
over and above the dependence based on geographical
proximity, on the average along the longitudinal direction.
The enhanced longitudinal dependence is on the average
weaker than the latitudinal dependence given the degree
of the tilt, however the tilt appears consistent for both cor-
relation and tail dependence. While longitudinal depen-
dence may be expected for isolated points or even at
regional or local scales due to topographic or similar
effects, a large-scale average dependence along longitudes
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may be spurious. This appears especially true since the lon-
gitudinal component of the dependence is not apparent in
the observed data (Fig. 13a).

By comparing observed and simulated data analyses for
the period 1940–2005, higher values for correlation and tail
dependence are observed from the simulated data as com-
pared to that from the observed data (Fig. 13). From the
observed data, no change is observed in correlation and tail
dependence from 1965 to 2005 by considering two time
windows 1965–1990 and 1980–2005 (plots not shown here).
From CCSM3 simulations, the correlation and tail depen-
dence plots for three time windows, i.e., 1965–1990, 1980–
2005, and 2060–2099, are not different from that shown in
Fig. 13b (plots not shown here).

4.4. Correlation and tail dependence between one specific

grid and all grids in South America

The pairwise correlation and tail dependence between
one specific grid and all other grids in South America
are analyzed. One specific grid each in the Amazon basin,
Brazilian Highlands, Mato Grasso Plateau, and São
Paulo are chosen to investigate if precipitation and precip-
itation extremes occurring in these areas have any effects
on precipitation and precipitation extremes in other parts
of South America. Fig. 14 shows correlation and tail
dependence corresponding to the grids in the Amazon
Basin, Brazilian Highlands, Mato Grasso Plateau, and
São Paulo.

In the Amazon basin, correlation between the chosen
grid, i.e., Manaus in Brazil, and small areas around that
grid, is high compared to the other parts of South America
(Fig. 14a). This indicates that precipitation at Manaus is
correlated with the areas surrounding it, but there is a very
small amount of dependence between extremes at Manaus
and its neighboring areas (Fig. 14a). The precipitation at
one specific grid in the Brazilian Highlands is highly corre-
lated with the precipitation at all grids in the Brazilian
Highlands (Fig. 14b). The precipitation correlation is also
high between one specific grid in the Brazilian Highland
and some grids in highly populated coastal eastern regions
of Brazil. The tail dependence at one specific grid and all
other grids in the Brazilian Highlands is also high com-
pared to the other parts of South America. In the Mato
Grasso Plateau, correlation between one specific grid and
all other grids in the plateau varies from 0.2 to 0.5
(Fig. 14c). The precipitation in the Mato Grasso Plateau
is also correlated with some portions of the Brazilian high-
lands. The tail dependence is only confined to the vicinity
of that grid and is very low at the other grids in the plateau.
A very high correlation is observed between precipitation
in São Paulo and highly populated coastal regions includ-
ing Rio De Janeiro (Fig. 14d). Correlation is also high
between one specific grid in São Paulo and some grids in
the Mato Grasso Plateau. The tail dependence between
São Paulo and some coastal cities close to São Paulo is also
high compared to the other parts of South America.

From the analyses of two overlapping time windows
1965–1990 and 1980–2005, correlation between one specific
grid in the Mato Grasso Plateau and its neighboring areas
appears to exhibit an increasing trend (Fig. 15). No change
is observed in the tail dependence from 1965 to 2005. Cor-
relation and tail dependence between one specific grid in
the Amazon basin, Brazilian Highlands, and São Paulo,
with all other grids in South America, remain unchanged
from 1965 to 2005 (results not shown here). We note that
time windows are used here to identify trends in the depen-
dence to a first order. However, overlapping time windows
are necessary to provide adequate data within each window
for estimation purposes.

Correlation and tail dependence between one specific
grid in the Amazon basin, Brazilian Highlands, Mato
Grasso Plateau, and São Paulo, with all other grids in
South America, for the simulated data from CCSM3 are
shown in (Fig. 16) from 1940 to 2005. The dependence,
i.e., correlation and tail dependence, show more regular

looking shapes with lesser spread for the simulations com-
pared to the observations (Fig. 14 and Fig. 16). One reason
may be that climate model simulations are based on partial
differential equations which are expected to lead to
smoother structures. When comparing dependence from
observations and simulations in the Amazon basin, the
observed correlation is found to be higher for the observed
data whereas the tail dependence is not significantly differ-
ent (Fig. 14a and Fig. 16a). In the Brazilian Highlands, the
observations show greater correlation and tail dependence
than the simulated data (Fig. 14b and Fig. 16b). The sim-
ulated data show greater correlation and tail dependence
in the Mato Grasso Plateau compared to the observed data
(Fig. 14c and Fig. 16c). No change in correlation and tail
dependence is observed in São Paulo in either observations
or simulations (Fig. 14d and Fig. 16d). The higher correla-
tion and tail dependence around one specific grid in the
Brazilian highlands, as well as in Sao Paulo, which are
obtained consistently from both observed and simulated
data, appear to correspond to the more varied orography
in those regions.

The simulated data from CCSM3 are analyzed for three
time periods, i.e., 1965–1990, 1980–2005, and 2060–2099,
to find the temporal variability of correlation and tail
dependence. The tail dependence in the Brazilian High-
lands and correlation in the Mato Grasso Plateau increase
from 1965 to 2005 (Fig. 17) whereas they are not different
for 1980–2005 and 2060–2099. Correlation does not change
in the Amazon basin, Brazilian Highlands, and São Paulo
whereas the tail dependence remains same in the Amazon
basin, Mato Grasso Plateau, and São Paulo for all three
time windows (plots not shown here).

5. Summary and conclusions

An approach for quantifying and visualizing depen-
dence among extreme values in space and time was pre-
sented. This study utilized weekly maxima residuals
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Fig. 14. Observed data: correlation and tail dependence between one specific grid (marked with a cross) in the (a) Amazon basin; (b) Brazilian highlands;
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precipitation from observations as well as climate simula-
tions obtained from CCSM3 because they showed weaker
temporal dependence compared to daily and weekly max-
ima precipitation. We analyzed observations and simula-
tions for the period 1940–2005 to explore and quantify
the correlation and tail dependence in space and time.
The spatial and temporal variability of correlation and tail
dependence between one specific grid in the Amazon basin,
Brazilian Highlands, Mato Grasso Plateau and São Paulo,
with all other grids in South America, were also investi-
gated. In addition, two time windows, i.e., 1965–1990
and 1980–2005, were analyzed separately to understand
the temporal change (or trends) in the spatial correlation
and tail dependence. The results of our analysis were used
to compare and contrast the correlation and tail depen-
dence obtained from observations and climate model sim-
ulations for the period 1940–2005. Finally, climate
simulations for the period 2060–2099 were investigated to
understand and produce predictive scenarios for the corre-
lation and tail dependence in the future. The important
insights from this study are summarized below.

• Correlation and tail dependence obtained from the anal-
ysis of simulations from CCSM3 are higher as compared

to that from observations when the distance between
grids is greater than 1700 km and 1500 km, respectively.
They appear to increase for observations from 1965 to
2005 based on two overlapping time windows, whereas
the simulated data show no change in correlation and
tail dependence for 1965–1990, 1980–2005, and 2060–
2099.

• Greater correlation and tail dependence in the latitudi-
nal direction are observed as compared to the longitudi-
nal direction for both observations and simulations. The
simulated data indicate more correlation and tail depen-
dence as compared to that from the observed data, and
appears to exhibit a slight tilt in the longitudinal
direction.

• Correlation and tail dependence between one specific
grid in the Amazon basin, Brazilian Highlands, Mato
Grasso Plateau, and São Paulo, with all other grids in
South America, show higher values over neighboring
areas for both observations and simulations. For obser-
vations, the tail dependence around one specific grid in
the Brazilian Highlands and São Paulo extends to some
highly populated coastal eastern regions of Brazil. When
compared to simulations, the observations show greater
correlation around one specific grid in the Amazon
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Fig. 16. Simulated data from the CCSM3 climate model: correlation and tail dependence between all grids in South America with one specific grid
(marked with a cross) in the (a) Amazon basin; (b) Brazilian highlands; (c) Mato Grasso Plateau; and (d) São Paulo for the period 1940–2005. Left
column: correlation. Right column: tail dependence.
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basin and Brazilian Highlands and greater tail depen-
dence in the Brazilian Highlands. The simulated data
show greater correlation and tail dependence in the
Mato Grasso Plateau as compared to that from the
observed data. Correlation around one specific grid in
the Mato Grasso Plateau increases for both observa-
tions and simulations from 1965 to 2005 based on two
overlapping time windows. There is an increase in tail
dependence in the Brazilian Highlands only in the case
of simulated data from 1965 to 2005.

The results and interpretations of our analysis are valid
at the space–time scales at which they were generated, spe-
cifically 10 · 10 spatial grids and weekly, and should not be
extrapolated to higher resolutions, for example, station
precipitation or daily data. The approaches for quantifying
spatio-temporal dependence among the usual and the
extreme values, developed in this study, can have signifi-
cant impacts in the analysis of geographic and/or spatio-
temporal data in multiple domains. These include, but
are not limited to, the analysis of remotely sensed data
from satellites and aerial photography as well as data col-
lected from in situ wireless sensor networks and large-scale
sensor infrastructures. In addition, they can be used to
study the inter-dependence among precipitation and tem-
perature extremes. Such studies can have significant
impacts on our understanding of crop yields as well as
extremal teleconnections in climate or hydrology.

While mathematical simulations, especially in complex
phenomena like hydrology and climate, may be able to
capture trends, they are known to be inadequate for
extremes because such models tend to capture the predom-
inant or usual behavior rather than the unusual. In addi-
tion, climate models are often tested by their ability to
generate realistic estimates of precipitation, as the latter
are known to be difficult to simulate owing to thresholds
and intermittencies, possible dominance of sub-grid scale
features like convection, as well as the fact that precipita-
tion is a derived quantity and not a state variable of the cli-
mate models. Thus, a comparison of observed and climate
model simulated precipitation extremes can be a hard test
for climate models. However, when extremes are of inter-
est, such comparisons are important, and can lead directly
to uncertainty estimates for the corresponding climate
model projections in the future. This study not only gener-
ates insights regarding the dependence among extreme pre-
cipitation values in space and time, but allows for a
thorough comparison between observations and model
simulations in terms of this dependence. The comparison
is performed both in an aggregate sense, e.g., when the
average dependence at multiple spatial lags is determined,
as well as in more detail when the dependence between
one selected point and all other points are determined. This
can lead to better understanding and quantification of the
uncertainty in the climate model simulations. Future
research needs to extend this study not only to compare
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the dependence between extremes but also the parameters
of the extreme value distributions, as well as compute
and visualize the uncertainties. The ultimate goal would
be to generate projections in the future regarding the prop-
erties of extremes, as well as estimates of the uncertainties
surrounding the projections.

Future research will investigate the dependence among
multiple hydrological and climatic variables, e.g., one
important area would be to explore the spatio-temporal
dependence among heat waves or cold spells, i.e., the geo-
spatial–temporal extremes of temperature. Future
improvements to the methodologies include rigorous
approaches for bias removal in the tail dependence mea-
sure, incorporation of sophisticated approaches for
extracting the temporal dependence structures and the
development of uncertainty quantification formulations
that can relate the exceedence of the re-scaled test statistic
proposed earlier over unity to the overall uncertainty esti-
mation. New methodological extensions can be developed
to explore the possibility of allowing extremal parameters,
or extremal dependence parameters, to be functions of
space and time. These extensions have been proposed by
previous researchers for univariate extreme value theory,
in the context of temporal trends in the extremes as well
as physically based covariates [3–6]. However, extensions
to multivariate extremal dependence may be rather
involved, especially if the dependence changes with space
and time. Finally, the eventual goal would be to relate
the insights obtained from this and similar studies to
improvements in our understanding of the precipitation
and climate physics at multiple scales. Since precipitation
extremes may be linked to El Niño-Southern Oscillation
(ENSO) [53,54] and Madden–Julian Oscillation (MJO)
[55], we will investigate the influence of ENSO and MJO
on the spatial dependence among precipitation extremes.
Future research will also tie this effort with our previous
work on nonlinear dependence between ENSO and the
tropical hydrological cycle [56].
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[8] Begueŕia S, Vicente-Serrano S. Mapping the hazard of extreme
rainfall by peaks over threshold extreme value analysis and
spatial regression techniques. J Appl Meteorol Climatol 2006;45:
108–24.

[9] Coles SG, Heffernan JE, Tawn JA. Dependence measures for extreme
value analysis. Extremes 1999;2:339–65.

[10] Ledford AW, Tawn JA. Diagnostics for dependence within time series
extremes. J R Statist Soc Ser 2003;B 65(2):521–43.

[11] Heffernan JE, Tawn JA. A conditional approach for multivariate
extreme values. J R Statist Soc Ser 2004;B 66(3):497–546.

[12] Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF,
Hennessy KJ, et al. Changes in the probability of heavy precipitation
important indicators of climatic change. Climatic Change
1999;42:243–83.

[13] Haylock M, Goodess C. Interannual variability of European extreme
winter rainfall and links with mean large-scale circulation. Int J
Climatol 2004;24:759–76.

[14] Coles SG, Tawn JA. Modelling extremes of the areal rainfall process.
J R Statist Soc 1996;B 58(2):329–47.

[15] Schlather M, Tawn JA. A dependence measure for multivariate and
spatial extreme values: properties and inference. Biometrika
2003;90(1):139–56.

[16] Liebmann B, Jones C, Carvalho LMV. Interannual variability of
daily extreme precipitation events in the state of São Paulo, Brazil. J
Clim 2001;14:208–18.

[17] Carvalho LMV, Jones C, Liebmann B. Extreme precipitation events
in southeastern South America and large-scale convective patterns in
the South Atlantic Convergence Zone. J Clim 2002;15:2377–94.

[18] Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE,
Ambenje P. Observed variability and trends in extreme climate events.
Bull Am Met Soc 2000;81:417–25.

[19] Meehl GA, Tebaldi C. More intense, more frequent, and longer
lasting heat waves in the 21st century. Science 2004;305:994–7.

[20] Liebmann B, Allured D. Daily precipitation grids for South America.
Bull Am Meteor Soc 2005;86:1567–70.

2422 G. Kuhn et al. / Advances in Water Resources 30 (2007) 2401–2423



Author's personal copy

[21] Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS,
Xavier PK. Increasing trends of extreme rain events over India in a
warming environment. Science 2006;314:1442.

[22] Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS,
Carton JA, et al. The community climate system model version 3
(CCSM3). J Clim 2006;19(11):2122–43.

[23] Branstetter ML, Erickson III DJ. Continental runoff dynamics on the
community climate system model version 2 (CCSM2) control
simulation. J Geophys Res 2003;108(D17):4550. doi:10.1029/
2002JD003213.

[24] Meehl GA, Arblaster JM, Tebaldi C. Understanding future patterns
of increased precipitation intensity in climate model simulations.
Geophys Res Lett 2005;32. doi:10.1029/2005GL023680.

[25] Boville BA, Rasch PJ, Hack JJ, McCaa JR. Representation of clouds
and precipitation processes in the community atmosphere model
version 3 (CAM3). J Clim 2006;19(11):2184–98.

[26] Gaines SD, Denny MW. The largest, smallest, highest, lowest,
longest, and shortest: extremes in ecology. Ecology 1993;74:1677–92.

[27] Kunkel KE, Changnon SA, Shealy RT. Temporal and spatial
characteristics of heavy-precipitation events in the Midwest. Mon
Wea Rev 1993;121:858–66.

[28] Yates D, Gangopadhyay S, Rajagopalan B, Strzepek K. A technique
for generating regional climate scenarios using a nearest-neighbor
algorithm. Water Resour Res 2003;39(7):1199. doi:10.1029/
2002WR001769.

[29] Michael JR. The stabilized probability plot. Biometrika
1983;70(1):11–7.

[30] Coles SG. On goodness-of-fit tests for the two-parameter Weibull
distribution derived from the stabilized probability plot. Biometrika
1989;76(3):593–8.

[31] Kimber AC. Tests for the exponential, Weibull and Gumbel
distributions based on the stabilized probability plot. Biometrika
1985;72(3):661–3.

[32] Davison A, Smith R. Models for exceedances over high thresholds
(with discussion). J R Statist Soc Ser 1990;B 52:393–442.

[33] Smith R, Robinson P. A bayesian approach to the modelling of
spatial–temporal precipitation data. In: Gatsonis C, editor. Case
studies in bayesian statistics III. Lecture notes in statistics 121,
121. New York: Springer; 1997. p. 237–64.

[34] Smith R, Tawn JA, Coles SG. Markov chain models for threshold
exceedances. Biometrika 1997;84:249–68.

[35] Smith R. Statistics of extremes, with applications in environment,
insurance and finance. In: Finkenstädt B, Rootzén H, editors.
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